
DOI 10.1007/s100529801023
Eur. Phys. J. C 7, 525–538 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

CP asymmetries in decays of the D0 − D̄0 system revisited

Youshan Dai1,2, Dongsheng Du1

1 Institute of High Energy Physics, Chinese Academy of Sciences P.O.Box 918(4), Beijing 100039, P.R. China
2 Department of Physics, Hangzhou University, Hangzhou 310028, P.R. China

Received: 8 April 1998 / Revised version: 1 July 1998 / Published online: 29 October 1998

Abstract. CP violation in neutral D meson decays to the CP eigenstates and non-CP eigenstates is studied
systematically within the framework of the Cabibbo-Kobayashi-Maskawa model. The nonleptonic two-body
decay processes and the decay processes with semileptonic tagging are discussed in detail and the upper
bounds of the direct and indirect CP violation in these decay processes are obtained. A method to measure
the mixing parameter ε̃ and to separate the direct and indirect CP violation in the decay processes with
semileptonic tagging are also discussed.

1 Introduction

The charm physics have been studied extensively since the
discovery of charmed particles in 1976 [1–3]. Up to now,
although the precision of the measurements needs to be
improved, we have a large number of experimental data on
charm decays especially in the neutral D meson sector [4].
The rich variety of available charm decay modes offers a
possibility to sudy decay mechanism of the charm hadrons
and to test the different theoretical methods.

The D0 − D̄0 mixing is closely connected to CP viola-
tion in neutral D meson decays. The study of the D0 −D̄0

mixing is not only complementary to our CP violation
knowledge on the K0 − K̄0 systems, but also important
for testing the standard model and probing new physics
beyond the standard model [5]. The mixing rate is defined
as

rD =
Number of D0 decaying as D̄0

Number of D0 decaying as D0

In the standard model rD is expected to be very small.
The short distance contribution to D0 − D̄0 mixing is via
box diagrams and is expected to be negligiblly small be-
cause the GIM cancellation in the box diagram is almost
perfect. The theoretical estimate for the long distance con-
tribution is controversial for different methods. The early
estimate gives rD ∼ 10−4 [6], and ∼ 10−6 [7]. Later on,
Georgi et al. [8] analyze it using Heavy Quark Effective
Field Theory (HQEFT) and claim that the long distance
contributions may be considerably smaller than the es-
timates in [6,7]. A recent estimate shows that the short
and long distance contributions are in the same order of
magnitude and rD ∼ 10−10 ∼ 10−9 [9]. In experiment,
observation of rD > 10−4 will imply the existance of new
physics. The present upper bounds for D0−D̄0 mixing are
rD < 4.7×10−3 (FNAL E791) and rD < 3.7×10−3(FNAL
E691) [10].

Since the long distance contribution and the effect of
final-state interactions can not be calculated reliablly at
present, the theoretical calculation for D0 − D̄0 mixing
and the CP violation in the charm system is not satisfac-
tory. So systematic study of the phenomenology D0 − D̄0

mixing and CP violation in charm system becomes nec-
essary and important for both further theoretical study
and experimental efforts at the high-luminosity fixed tar-
get facilities, the forthcoming B-meson factories and the
proposed τ -charm factories.

The phenomenology of D0 − D̄0 mixing and CP vio-
lation in neutral D meson decays was first discussed by
Pais and Treiman, Bigi and Sanda [11] and have been fur-
ther studied afterwards [12]. But there are still many un-
certainties. Further studies are definitely needed. In this
paper, we shall refine the phenomenology of D0 −D̄0 mix-
ing and CP violation in neutral D meson decays. In our
method there are several features which are different from
the early discussions
(a) Our caculation contains the effects of CP violation
caused by mixing parameter
ε̃ = |p|2 − |q|2. Sometimes, the CP violation term pro-
portional to ε̃ is also important. Especially for the decay
processes of the coherent (D0D̄0) pair using semileptonic
tagging, we have the CP asymmetry A(−)

CP (f, `+X−) ≈ 2ε̃.
In some early discussions in the literature the overlooked
processes might be the most promising ones to observe CP
violation in neutral D meson decays if |ε̃| ∼ 10−3.
(b) We analyse in detail the indirect CP violating asymme-
try arising from the interplay between mixing and decay
for the D0 − D̄0 system decaying into CP eigenstates. It
turns out that this indirect CP asymmetry is −xsinφf +
yε̃cosφf . In the early discussions, the term yε̃cosφf is often
neglected (since taking approximation |p|2 = |q|2), but for
the term −xsinφf , the magnitude of sinφf is uncertain
(sometimes taking sinφf = 1 is not correct). So we can
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not always omit the term yε̃cosφf .
(c) Since the difficulty both in theoretical calculation and
experimental measurement, the strong phase-shift δf =
δ1 − δ2 (where the decay amplitude is written as A(f) =
G1T1e

iδ1 + G2T2e
iδ2)is unknown at present [13]. We use

extremum method to estimate the upper bounds of di-
rect and indirect CP violation. These upper bounds of
CP asymmetries are more reliable and thus useful for de-
signing experiments.

The outline of this paper is as follows. The generic
time-integrated CP asymmetry formulas for the decay of
the neutral P 0 − P̄ 0 meson system are represented in
Sect. 2. Using these CP asymmetry formulas given in Sect.
2, we discuss systematically the D0 − D̄0 mixing and CP
violation in neutral D meson decays into CP eigenstates
and non-CP eigenstates in Sect. 3. Our calculated results
will be discussed in Sect. 4.

2 Generic time-integrated CP asymmetry
formulas

In this section, we will give the generic time-integrated CP
asymmetry formulas for the decay of the neutral P 0 − P̄ 0

meson system. These phenomenological CP asymmetry
formulas are model independent and analytically accurate
since there are no special assumption in our derivation. So
it is universally applicable for the decay of the different
neutral P 0 − P̄ 0 meson system. These formulas are firstly
discussed by Pais and Treiman; Bigi and Sanda [11], then
developed by many authors [14]. All of the formulas are
essentially the same, but different people emphasize dif-
ferent aspects. In this paper, we use our expressions for
convenience.

2.1 CP asymmetry for the decay
of the neutral meson system

Take the phase convention as CP |P 0 >= |P̄ 0 > and as-
sume CPT invariance, then the mass eigenstates of P 0 and
P̄ 0 mesons can be written as

|PL >= p|P 0 > +q|P̄ 0 >

|PH >= p|P 0 > −q|P̄ 0 >
(2.1)

with the eigenvalues λL,H = mL,H − i
2γL,H , where the

subscript indicates light or heavy respectively, and p,q are
complex mixing parameters

|p|2 + |q|2 = 1 (2.2)

p

q
=

[
M12 − i

2Γ12

M∗
12 − i

2Γ
∗
12

]1/2

(2.3)

with the definitions

M ≡ 1
2
(mL +mH), ∆m ≡ mH −mL

Γ ≡ 1
2
(γL + γH), ∆γ ≡ γL − γH > 0

(2.4)

A pure P 0 or P̄ 0 at t = 0 evolves in time as

|P 0
phys(t) >= g+(t)|P 0 > +

q

p
g−(t)|P̄ 0 >

|P̄ 0
phys(t) >=

p

q
g−(t)|P 0 > +g+(t)|P̄ 0 >

(2.5)

where g±(t) = 1
2 (e−iλLt ± e−iλHt). If the neutral mesons

have very short life-time, we have to consider the time-
integrated effects. Denote the CP-conjugate state of the
final state f by f̄ , |f̄ >≡ CP |f >, our CP asymmetry is
defined as

ACP (f) =
Γ (P 0

phys → f) − Γ (P̄ 0
phys → f̄)

Γ (P 0
phys → f) + Γ (P̄ 0

phys → f̄)
(2.6)

where

Γ (P 0
phys → f) =

∫ ∞

0
dt| < f |H|P 0

phys(t) > |2

Γ (P̄ 0
phys → f̄) =

∫ ∞

0
dt| < f |H|P̄ 0

phys(t) > |2
(2.7)

From (2.5), we obtain the transition amplitude of a
neutral meson decaying into the final state f as

< f |H|P 0
phys(t) >= g+(t)A(f) +

q

p
g−(t)Ā(f)

< f̄ |H|P̄ 0
phys(t) >=

p

q
g−(t)A(f̄) + g+(t)Ā(f̄)

(2.8)

where A(f) ≡< f |H|P 0 >, Ā(f) ≡< f |H|P̄ 0 >,A(f̄) ≡<
f̄ |H|P 0 >, Ā(f̄) ≡< f̄ |H|P̄ 0 >. For convenience, we define
the ratio of these two amplitudes as

ρf ≡ Ā(f)
A(f)

ρf̄ ≡ Ā(f̄)
A(f̄)

(2.9)

then we obtain

Γ (P 0
phys → f)

= |A(f)|2
[
G+ +G−|q

p
ρf |2 (2.10)

+2(ReG+−)Re
(
q

p
ρf

)
− 2 (ImG+−) Im

(
q

p
ρf

)]

Γ
(
P̄ 0

phys → f̄
)

= |Ā (
f̄
) |2

[
G+ +G−|p

q

1
ρf̄

|2 (2.11)

+2 (ReG+−)Re
(
p

q

1
ρf̄

)
− 2 (ImG+−) Im

(
p

q

1
ρf̄

)]

where

G+ ≡
∫ ∞

0
dt|g+(t)|2, G− ≡

∫ ∞

0
dt|g−(t)|2,

G+− ≡
∫ ∞

0
dt g∗

+(t)g−(t).
(2.12)



Y. Dai, D. Du: CP asymmetries in decays of the D0 − D̄0 system revisited 527

In the equations above, the x and y are two dimensionless
mixing parameters, x ≡ ∆m

Γ , y ≡ ∆γ
2Γ . Note that both

x and y are positive in our definition. From these pre-
liminary formulas, we will discuss the time-independent
CP asymmetry for neutral P 0 − P̄ 0 meson decays to CP
eigenstates and non-CP eigenstates in Sects. 2.2 and 2.3
respectively.

2.2 Decays to CP eigenstates

If the neutral meson decays to CP eigenstates, i.e., |f̄ >=
±|f >, so we have

|A(f̄)| = |A(f)|, |Ā(f̄)| = |Ā(f)|, ρf̄ = ρf (2.13)

Put
q

p
≡ |q

p
|eiα, ρf ≡ |ρf |eiβf ,

q

p
ρf ≡ |q

p
ρf |eiφf (2.14)

then we have

φf = α+ βf (2.15)

where φf is rephasing invariant [15]. It is easy to see that

p

q
ρ∗

f = |p
q
ρf |e−iφf (2.16)

Substituting (2.14), (2.16), and (2.12) into (2.6), we find

Acp(f) =
N1

D1
(2.17)

where

N1 = (2 + x2 − y2)(1 − |ρf |2)
+(x2 + y2)[|q

p
|2|ρf |2 − |p

q
|2]

−2(1 + x2)y|ρf |[|q
p
| − |p

q
|]cosφf

−2(1 − y2)x|ρf |[|q
p
| + |p

q
]sinφf

D1 = (2 + x2 − y2)(1 + |ρf |2)
+(x2 + y2)[|q

p
|2|ρf |2 + |p

q
|2]

−2(1 + x2)y|ρf |[|q
p
| + |p

q
|]cosφf

−2(1 − y2)x|ρf |[|q
p
| − |p

q
|sinφf . (2.17)

We now define the CP violation parameters ε and ε̃ as

ε ≡
1 − q

p

1 + q
p

, (2.18)

ε̃ ≡
1 − | q

p |2
1 + | q

p |2 = |p|2 − |q|2 =< P 0
H |P 0

L > , (2.19)

from (2.3),

ε̃ =
2Reε

1 + |ε|2

=
Im(M∗

12Γ12)
|M12|2 + 1

4 |Γ12|2 + 1
4 (∆m)2 + 1

16 (∆γ)2
(2.20)

We know that ε depends on the phase convention, so it
is not a physical quantity, but the ε̃ is a real CP vio-
lation parameter which is rephasing invariant. Actually
the ε̃ denotes the CP violation in the amplitude modu-
lus, i.e. | q

p |2 6= 1. If |ε| is of the order 10−3 from (2.20),
|ε̃| ≤ 2|ε| ∼ 10−3.

For CP eigenstates f, |ρf | = |Ā(f)|
|A(f)| = |Ā(f̄)|

|A(f)| . We define
the direct CP violating asymmetry ∆f as

∆f =
|A(f)|2 − |Ā(f̄)|2
|A(f)|2 + |Ā(f̄)|2 =

1 − |ρf |2
1 + |ρf |2 (2.21)

Assuming |∆f | � 1 and also x � 1 (this is true for
D0 − D̄0 system), y � 1, then we obtain a simple CP
asymmetry formula

ACP (f) ≈ ∆f − xsinφf + yε̃cosφf − (x2 + y2)ε̃.(2.22)

We can see that there are four CP violating terms in
(2.22). The first term ∆f measures the direct CP violation
in the transition amplitudes of the neutral meson decays.
The other terms measure the indirect CP violation: the
second and the third terms arise from the interplay be-
tween mixing and decay, the fourth term arises from only
the mixing which is independent of the particular decay
modes. The magnitude of the indirect CP violation de-
pends on the four dimensionless and rephasing-invariant
mixing parameters x, y, ε̃ and φf , in which only φf relates
to the specific decay final state. We emplasize that some-
times the CP violating terms directly proportional to ε̃
are also important in comparison with the other terms,
although they are small and can be often neglected (i.e.
taking approximation |p|2 = |q2|) in the early discussion
for CP asymmetry.

To discuss the direct CP violating asymmetry ∆f , we
may, without loss of generality, write the decay transition
amplitude as

A(f) = G1 T1 e
iδ1 +G2 T2 e

iδ2 (2.23)

where G1, G2 both are multiplication of two CKM matrix
elements, δ1, δ2 are the strong phases and T1, T2 denote the
real (positive) decay amplitude. With the CPT invariance,
the CP-conjugate amplitude is

Ā(f̄) = G∗
1 T1 e

iδ1 +G∗
2 T2 e

iδ2 (2.24)

We can obtain the direct CP vialating asymmetry as

∆f =
2Im(G∗

1G2)sin(δ1 − δ2)
|G1|2T1/T2 + |G2|2T2/T1 +Re(G∗

1G2)cos(δ1 − δ2)
(2.25)
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Acp(f) =
|ρf |sinφ(+)

f [(ysinφ(−)
f − xcosφ

(−)
f ] + |ρf |cosφ(+)

f [ycosφ(−)
f + xsinφ

(−)
f ]ε̃− |ρf |2(x2 + y2)ε̃

1 + 1
2 |ρf |2(x2 + y2) − |ρf |cosφ(+)

f [ycosφ(−)
f + xsinφ

(−)
f ]

(2.34)

It is clear that the ∆f will vanish in both the cases of
Im(G∗

1G2) = 0 or sin(δ1−δ2) = 0. In the case of Im(G∗
1G2)

= 0, the decay amplitude must have only a single weak
phase. If not, we have G1 6= G2 and |Im(G∗

1G2)| is a non-
zero constant [16]

|ImG∗
1G2| = J = c1c2c3s

2
1s2s3sδ (2.26)

Since the difficulty both in theoretical calculation and ex-
perimental measurement, the strong phase-shift (δ1 − δ2)
is uncertain. We will use extermum method to detour
over this hurdle. At the maximum point of the ∆f [(δ1 −
δ2)], cos(δ1 − δ2) = −2Re(G∗

1G2)
|G1|2T1/T2+|G2|2T2/T1

, we obtain the
upper bound of direct CP violating asymmetry

|∆f | ≤ 2|Im(G∗
1G2)|√

(|G1|2T1/T2 + |G2|2T2/T1)2 − 4[Re(G∗
1G2)]2

.

(2.27)

Using these formulas, we will discuss the direct CP vio-
lation for the decays of the D0 − D̄0 system in Sect. 3.2
.

2.3 Decays to non-CP eigenstates

If both P 0 and P̄ 0 mesons can decay into a common non-
CP eigenstates, we now only discuss the following cases in
which the decay amplitudes can be factorized formally as

A(f) = GfTf e
iδf , Ā(f) = Ḡf T̄f e

iδ̄f (2.28)

and

Ā(f̄) = G∗
fTf e

iδf , A(f̄) = Ḡ∗
f T̄f e

iδ̄f (2.29)

This means that the decay amplitudes have only a sin-
gle weak phase or a single strong phase. For example, if
only a single weak phase Gf is involved, then A(f) =
Gf (T1 e

iδ1 + T2 e
iδ2) = GfTf eiδf . Where Tf and δf are

functions of T1, T2, δ1, δ2. In most cases of decays to non-
CP eigenstates, the condition (2.28) is usually satisfied.
Obviously there are no direct CP violation in these decay
processes, so we have the relations

|Ā(f̄)| = |A(f)|, |A(f̄)| = |Ā(f)| |ρf̄ | =
1

|ρf | (2.30)

From (2.10) and (2.11) and the conditions (2.30). We ob-
tain

Acp(f) =
N2

D2
(2.31)

where

N2 = G−|ρf |2[|q
p
|2 − |p

q
|2] + 2Re(G+−)[|q

p
|cosφf

−|p
q
|cosφf̄ ] − 2Im(G+−)|ρf |[|q

p
|sinφf + |p

q
|sinφf̄ ]

D2 = 2G+ +G−|ρf |2[|q
p
|2 + |p

q
|2]

+2Re(G+−)|ρf |[|q
p
|cosφf + |p

q
|cosφf̄ ]

−2Im(G+−)|ρf |[|q
p
|sinφf − |p

q
|sinφf̄ ].

where the φf , φf̄ are rephasing-invariant and are defined
as

q

p
ρf ≡ |q

p
ρf |eiφf ,

q

p
ρf̄ ≡ |q

p
ρf̄ |eiφf̄ (2.32)

After some arithmetics, we obtain the CP asymmetry for-
mula as follows

Acp(f) ≈ N3

D3
, (2.33)

where

N3 = |ρf |sinφ(+)
f [(1 + x2)ysinφ(−)

f − (1 − y2)xcosφ(−)
f ]

+|ρf |cosφ(+)
f [(1 + x2)ycosφ(−)

f

+(1 − y2)xsinφ(−)
f ]ε̃− |ρf |2(x2 + y2)ε̃

D3 =
1
2
(2 + x2 − y2) +

1
2
|ρf |2(x2 + y2)

−|ρf |cosφ(+)
f [(1 + x2)ycosφ(−)

f + (1 − y2)xsinφ(−)
f ]

where φ(±)
f ≡ 1

2 (φf ± φf̄ ).
If x2 � 1, y2 � 1,then the CP asymmetry formula

(2.33) can be simplified as (see (2.34) on top of the page).
We can see that there is a factor |ρf | which will enhance
(|ρf | > 1) or suppress (|ρf | < 1) the CP asymmetry. From
(2.28), (2.29) ρf , ρf̄ are given as

ρf ≡ |ρf |eiβf ≡ Ā(f)
A(f)

=
Ḡf T̄fe

iδ̄f

GfTfeiδf

ρf̄ ≡ |ρf̄ |eiβf̄ ≡ Ā(f̄)
A(f̄)

=
G∗

fTfe
iδf

Ḡ∗
f T̄feiδ̄f

(2.35)

Define the weak phases as Gf ≡ |Gf |eiθf , Ḡf ≡ |Ḡf |eiθ̄f ,
we have βf = (θ̄f − θf ) + (δ̄f − δf ) and βf̄ = (θ̄f − θf ) −
(δ̄f −δf ). Then we find that the φ(+)

f is independent of the

strong phases and the φ(−)
f is related to the strong phase

only:

φ
(+)
f = α+ (θ̄f − θf ) φ

(−)
f = δ̄f − δf (2.36)
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A(−)
CP (f1f2) ≈2(1 − |ρf1 |2|ρf2 |2)(x2 + y2)ε̃+ 4|ρf1 ||ρf2 |sin(φ(+)

f1
− φ

(+)
f2

)sin(φ(−)
f1

− φ
(−)
f2

)

(1 + |ρf1 |2|ρf2 |2)(x2 + y2) − 4|ρf1 ||ρf2 |cos(φ(+)
f1

− φ
(+)
f2

)cos(φ(−)
f1

− φ
(−)
f2

)
(2.43)

(2.34) and (2.36) are the master formulas for our discus-
sion concerning theD0−D̄0 decays to non-CP eigenstates.

2.4 Coherent decays of neutral meson pairs

In most cases the P 0P̄ 0 are produced in pair. Before decay
the coherent P 0P̄ 0 pair is described by the wavefunction

|i(t, t2) >η =
1√
2
[|p0

phys(t1) >L |P̄ 0
phys(t2) >R

+η|P 0
phys(t2) >R |P̄ 0

phys(t1) >L] (2.37)

where L and R signify the three-momentum vecter of the
neutral mesons, and η = ±1 denotes the charge-conju-
gation parity of this coherent system. We consider a joint
decay process that one of the two neutral mesons (denoted
by L) decays into a final state f1 at proper time t1 and the
other (denoted by R) decays into f2 at t2. After a lengthy
calculation, we find

< f1t1; f2t2|H|i(t1, t2) >η

=
1√
2
A(f1)A(f2){(

p

q
+ η

q

p
ρf1ρf2)[g+(t1)g−(t2)

+ηg−(t1)g+(t2)] + (ρf1 + ηρf2)[g+(t1)g+(t2)
+ηg−(t1)g+(t2)]} (2.38)

Γ (f1, f2)η ≡
∫ ∞

0

∫ ∞

0
dt1dt2| < f1t1; f2t2|Hi(t1t2) >η |

(2.39)

We can get expressions for Γ (f̄1, f̄2)η and Γ (f1, f̄2)η by
replacement f1 → f̄1, f2 → f̄2 in (2.39) where f̄1 and f̄2
are CP-conjugate states of f1 and f2 respectively

Γ (f̄1, f̄2)η ≡
∫ ∞

0

∫ ∞

0
dt1dt2| < f̄1t1; f̄2t2|H|i(t1t2) >η |2

Γ (f1, f̄2)η ≡
∫ ∞

0

∫ ∞

0
dt1dt2| < f1t1; f̄2t2|H|i(t1t2) >η |2

(2.40)

For simplicity we will discuss the case of η = −1 only (the
case of η = +1 can be discussed with the same method).
(i) f1 and f2 both are non-CP eigenstates

Similar as in Sect. 2.3 assuming that there is no direct
CP violation in the case of decays to non-CP eigenstates,
it means |A(f̄i)| = |Ā(fi)|, |Ā(f̄i)| = |A(fi)| and |ρf̄i

| =

1
|ρfi

| (i = 1, 2), then we find

A(−)
CP (f1, f2) ≡ Γ (f1, f2)− − Γ (f̄1, f̄2)−

Γ (f1, f2)− + Γ (f̄1, f̄2)−
=
Γ−
Γ+

Γ− = (1 − |ρf1 |2|ρf2 |2)(|
p

q
|2 − |q

p
|2)(x2 + y2)

−4|ρf1 ||ρf2 |
×[(1 + x2)(cosφf1cosφf2 − cosφf̄1

cosφf̄2
)

+(1 − y2)(sinφf1sinφf2 − sinφf̄1
sinφf̄2

)]

Γ+ = (1 + |ρf1 |2|ρf2 |2)(|
p

q
|2 + |q

p
|2)(x2 + y2)

−4|ρf1 ||ρf2 |[(1 + x2)(cosφf1cosφf2

+cosφf̄1
cosφf̄2

) + (1 − y2)(sinφf1sinφf2

+sinφf̄1
sinφf̄2

)] (2.41)

For the particular case ρf2 = 0 (or ρf1 = 0), we find

A(−)
CP (f1, f2) =

|p
q |2 − | q

p |2
|p
q |2 + | q

p |2 =
2ε̃

1 + ε̃2
≈ 2ε̃ (2.42)

In that case the CP violation is independent of the final-
state f1 (or f2 ). Therefore the formula (2.42) is very useful
to measure the mixing parameter ε̃ experimentally.

If x2 � 1, y2 � 1, we can further simplify the
CP asymmetry (2.41) as follows (see (2.43) on top of the
page). where φ±

fi
≡ 1

2 (φfi
± φf̄i

) (i = 1, 2).
(ii) f1 is CP eigenstates and f2 is non-CP eigenstates

Assuming that there is no direct CP violation for de-
cays to non-CP eigenstates, i.e. |A(f̄2)| = |Ā(f2), |Ā(f̄2)| =
|A(f2)|, and |ρf̄2

| = 1
|ρf2 | , then we have

A(−)
CP (f1f2) ≡ Γ (f1, f2)− − Γ (f̄1, f̄2)−

Γ (f1, f2)− + Γ (f̄1, f̄2)−

=
Γ (f1, f2)− − Γ (f1, f̄2)−
Γ (f1, f2)− + Γ (f1, f̄2)−

=
Γ ′

−
Γ ′

+

Γ ′
− = (1 − |ρf2 |2)[(|

p

q
|2 − |q

p
|2|ρf1 |2)(x2 + y2)

+(|ρf1 |2 − 1)(2 + x2 − y2)]

−4|ρf1 ||ρf2 |[(1 + x2)
×cosφf1(cosφf2 − cosφf̄2

)

+(1 − y2)sinφf1(sinφf2 − sinφf̄2
)]

Γ ′
+ = (1 + |ρf2 |2)[(|

p

q
|2 + |q

p
|2|ρf1 |2)(x2 + y2)

+(|ρf1 |2 + 1)(2 + x2 − y2)]

+4|ρf1 ||ρf2 |[(1 + x2)
×cosφf1(cosφf2 + cosφf̄2

)

+(1 − y2)sinφf1(sinφf2 + sinφf̄2
)] (2.44)
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A(−)
CP (f1, f2) ≈ (1 − |ρf2 |2)[−∆f1 + (x2 + y2)ε̃] − 2|ρf2 |sin(φf1 − φ

(+)
f2

)sinφ(−)
f2

1 + |ρf2 |2 − 2|ρf2 |cos(φf1 − φ
(+)
f2

)cosφ(−)
f2

(2.45)

A(f)
CP =

Γ (D0
phys → f) − Γ (D̄0

phys → f̄)

Γ (D0
phys → f) + Γ (D̄0

phys → f̄)

≈ |ρf |sinφ(+)
f [ysinφ(−)

f − xcosφ
(−)
f ] + |ρf |cosφ(+)

f [ycosφ(−)
f + xsinφ

(−)
f ]ε̃− |ρf |2(x2 + y2)ε̃

1 + 1
2 |ρf |2(x2 + y2) − |ρf |cosφ(+)

f [ycosφ(−)
f + xsinφ

(−)
f ]

(3.3)

if x2 � 1, y2 � 1, and using the relation | q
p |2 = 1−ε̃

1+ε̃ ,

|ρf1 |2 = 1−∆f1
1+∆f1

, the CP asymmetry (2.44) reads (see (2.45)

on top of the page). Since φ(+)
f̄2

= φ
(+)
f2

, φ(−)
f̄2

= −φ(−)
f2

and
|ρf̄2

| = 1
|ρf2 | , it is seen that the approximate CP asymme-

try formula (2.45) still satisfy the relation A(−)
CP (f1, f̄2) =

−A(−)
CP (f1, f2) for the case of the f1 being CP eigenstates.

If |ρf2 | � 1, we obtain the simple CP asymmetry formula

A(−)
CP (f1, f2) = −∆f1 + (x2 + y2)ε̃

−2|ρf2 |sin(φf1 − φ
(+)
f1

)sinφ(−)
f2

(2.46)

for the particular case ρf2 = 0, we get

A(−)
CP (f1, f2) = −∆f1 + (x2 + y2)ε̃ (2.47)

in comparision with (2.22), we obtain the relation for the
case of ρf2 = 0

ACP (f1) + A(−)
CP (f1, f2) = −xsinφf1 + yε̃cosφf1(2.48)

The formulas (2.47) and (2.48) provide a method to sepa-
rate the direct CP violation and the indirect CP violation
arising from the interplay between mixing and decay for
the case of decays to CP eigenstate f1. It is very useful
specially, for the decay process with semileptonic tagging.

3 CP violation in neutral D meson decays

Utilizing the CP asymmetry formulas derived in the sec-
tions above, we will discuss systematically the D0 − D̄0

mixing and CP violation for neutral D meson decays to a
variety of CP eigenstates and non-CP eigenstates in this
section. We analyse in detail the direct and indirect CP
violation within the standard model and obtain the upper
bound of the direct and indirect CP violation in neutral D
meson decays. These results are very useful for searching
CP-violating singnals in neutral D meson decays, for mea-
suring the mixing parameters of the D0 − D̄0 system and
for searching new physics beyond the standard model.

3.1 CP asymmetries for the decays
of the D0 − D̄0 system

In experiment, the incoherent single D0(D̄0) can be ob-
tained in the decay process Ψ(4.14) → D−D∗+ →

π+D−D0 and its conjugate decay Ψ(4.14) → D+D∗− →
π−D+D0, while the coherent D0D̄0 pair can be obtained
in the decay processes Ψ(3.77) → D0D̄0 or Ψ(4.14) →
D∗0D̄0 → π0D0D̄0. There are three dimensionless mix-
ing parameters xD, yD and ε̃D which are related to the
D0 − D̄0 system only,

xD ≡ ∆mD

ΓD
=

m
(D)
H −m

(D)
L

1/2(γ(D)
L + γ

(D)
H )

> 0,

yD ≡ ∆ΓD

2ΓD
=
γ

(D)
L − γ

(D)
H

γ
(D)
L + γ

(D)
H

> 0,

ε̃D ≡ |pD|2 − |qD|2 (3.1)

At present the experimental upper bounds for D0−D̄0

mixing are rD ≈ 1
2 (x2 + y2) < 4.7 × 10−3 (FNAL E791)

and rD ≈ 1
2 (x2 +y2) < 3.7×10−3 (FNAL E691). It is also

believed that |ε̃D| ∼ 10−3, so xD � 1, yD � 1 and |ε̃D| �
1. For convenience, we will omit the subscript ”D” below.
According to (2.22) and (2.34), the CP asymmetries for
the incoherent D0(D̄0) decays to the CP eigenstates and
the non-CP eigenstates are

Acp(f = ±f̄) =
Γ (D0

phys → f) − Γ (D̄0
phys → f)

Γ (D0
phys → f) + Γ (D̄0

phys → f)
(3.2)

≈ ∆f − xsinφf + yε̃cosφf − (x2 + y2)ε̃

(see (3.3) on top of the page) where φ(±)
f ≡ 1

2 (φf ± φf̄ )
For the case of the coherent D0D̄0 pair decay, from (2.43)
and (2.45), we have (see (3.4) and (3.5) on top of the next
page). There is an important simplification for the de-
cays with semileptonic tagging. Assuming the the semilep-
tonic final-state is |f2 >= |`+X− >, since the process
D̄0 → `+X− is forbidden according to the ∆Q = ∆C

rule, Ā(f2) =< `+X−|H|D̄0 >= 0, |ρf2 | = |Ā(f2)|
|A(f2)| = 0,

from (3.4) and (3.5), we get

A(−)
CP (f, `+X−) = 2ε̃ (3.6)

A(−)
CP (f = ±f̄ , `+X−) = −∆f + (x2 + y2)ε̃ (3.7)

Because A(−)
CP (f̄1, f̄2) = −A(−)

CP (f1, f2), we have similarly
A−

CP (f, `−X+) ≈ −2ε̃, A(−)
CP (f = ±f̄ , `−X+) ≈ ∆f −(x2+
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A(−)
CP (f1, f2) =

Γ (f1, f2)− − Γ (f̄1, f̄2)−
Γ (f1, f2)− + Γ (f̄1, f̄2)−

≈ 2(1 − |ρf1 |2|ρf2 |2)(x2 + y2)ε̃+ 4|ρf1 ||ρf2 |sin(φ(+)
f1

− φ
(+)
f2

)sin(φ(−)
f1

− φ
(−)
f2

)

(1 + |ρf1 |2|ρf2 |2)(x2 + y2) − 4|ρf1 ||ρf2 |cos(φ(+)
f1

− φ
(+)
f2

)cos(φ(−)
f1

− φ
(−)
f2

)
(3.4)

A(−)
CP (f1 = ±f̄1, f2) =

Γ (f1, f2)− − Γ (f1, f̄2)−
Γ (f1, f2)− + Γ (f1, f̄2)−

≈ (1 − |ρf2 |2)[−∆f1 + (x2 + y2)ε̃] − 2|ρf2 |sinφf1 − φ
(+)
f2

)sin(φ(−)
f2

1 + |ρf2 |2 − 2|ρf2 |cos(φf1 − φ
(+)
f2

)cosφ(−)
f2

(3.5)

y2)ε̃. From (3.2) and (3.7), we find

ACP (f = ±f̄) + A(−)
CP (f = ±f̄ , `+X−)

= −xsinφf + yε̃cosφf (3.8)

(3.6), (3.7) and (3.8) are very useful formulas in experi-
ment for measuring the mixing parameter ε̃, the direct CP
violation asymmetry ∆f and the indirect CP violation of
the neutral D mesons decays to the CP eigenstates re-
spectively. Because the A(−)

CP (f, `±X±) is independent of
the decay final-state f , it is not only possible to increase
statistics, but also possible to check the ∆Q = ∆C rule of
the standard model.

From our CP asymmetry formulas above, the magni-
tude of the CP violation depends on not only the mixing
parameters x, y, ε̃, but also the magnitude of the ∆f , φf

(for decays to CP eigenstales) and the |ρf |, φ(±)
f (for de-

cays to non-CP eigenstates) which all relate to the specific
final-state of decay. In order to find the main effects of the
CP violation in our CP asymmetry formulas, it is neces-
sary and important to estimate these CP violation param-
eters. We will discuss these CP violation parameters for
two-body decay processes in the next section.

3.2 Direct CP violation asymmetry ∆f

The decay amplitude for the D0 decays to CP eigenstates
can be written as

A(f) = G1T1e
iδ1 +G2T2e

iδ2 (3.9)

where the CKM elements are G1 = VudV
∗
cd, G2 = VusV

∗
cs.

According to the Wolfenstein representation of the CKM
matrix [17]

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (3.10)

=


 1 − λ2

2 λ Aλ3(ρ− iη)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


 +O(λ4)

and taking the Wolfenstein parameter as [18] λ = 0.22,
A = 0.823, η = 0.336, ρ = 0.160, we find

|G1|2 ≈ |G2|2 ≈ −(ReG∗
1G2) ≈ λ2(1 − λ2

2
)2 (3.11)

J = ImG1G
∗
2 = Im(VudVcsV

∗
usV

∗
cd)

≈ A2λ6(1 − λ2

2
)η ≈ 2.52 × 10−5 (3.12)

from (2.25), our direct CP violation asymmetry is

∆f ≈ − 2A2λ4η

(1 − λ2

2 )
· sin(δ1 − δ2)

T1
T2

+ T2
T1

− 2cos(δ1 − δ2)

≈ −1.09 × 10−3 sinδf

hf + 1
hf

− 2cosδf
(3.13)

where hf ≡ T1
T2
> 0, δf ≡ δ1 − δ2.

If hf >> 1 or hf � 1, in both cases the direct CP
violation asymmetry will be very small

∆f = −1.09 × 10−3 ×
{
hfsinδf (hf � 1)
1

hf
sinδf (hf >> 1) (3.14)

For the decay of D0 → K+K−, since T1 only contains the
contribution of the penguin-diagram, it is much smaller
comparing with T2 which is dominanted by the tree-dia-
gram and hf ∼ 10−2 � 1 [19]. For similar reason, for the
decay of D0 → π+π−, π0π0, π0ρ0, hf ∼ 102 >> 1. From
(3.13), we get

∆f ≈ −1.09 × 10−5sinδf , (3.15)

so |∆f | < 1.09 × 10−5 (f = K+K−, π+π−, π0π0, π0ρ0)

For the decay of D0 → π0η, π0φ, ηφ, ηη, T1 and T2 are
approximately equal in order of magnitude but T1 6= T2
i.e. hf ∼ o(1), from (2.27) and (3.11), (3.12), the upper
bound of direct CP violation asymmetry is

|∆f | ≤ 3.25η × 10−3√
(T1/T2 + T2/T1)2 − 4

=
3.25η × 10−3

|hf − 1/hf |
= 1.09 × 10−3F (hf ) (3.16)

where we take η ≈ 0.34 and F (hf ) = 1
|hf −1/hf | = hf

|h2
f −1| .

Obviously F (hf ) = F (1/hf ) holds. Because F (hf ) is an
increasing function for hf < 1, but a decreasing function
for hf > 1, then for hf < 4/5 = 0.8 or hf > 5/4 = 1.25, we
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get F (hf ) < F (5/4) = 20/9 ≈ 2.2 and |∆f | < 2.40×10−3;
if hf < 1/5 = 0.2 or hf > 5, we get F (hf ) < F (5) =
5/24 ≈ 0.2 and |∆f | < 2.18 × 10−4.

Assuming 0.2 < hf < 0.8 or 1.25 < hf < 5 for the
decay of D0 → π0η, π0φ, ηφ, ηη, we find the upper bound
of direct CP violation asymmetry is

|∆f | < 2 × (10−4 ∼ 10−3)

(f = π0η, π0φ, ηφ, ηη) (3.17)

For the decay of D0 → K0K̄0, φφ, T1 = T2 (or T1 ≈ T2),
we must be careful to use the approximate Wolfenstein
parameterization in this case. By the unitarity of the CKM
matrix, VudV

∗
cd + VusV

∗
cs + VubV

∗
cb = 0, we find

|G1|2 + |G2|2 + 2(ReG∗
1G2)

= |VubV
∗
cb|2 ≈ A4λ10(ρ2 + η2) (3.18)

For the case of T1 = T2, the direct CP violation formula
(2.25) becomes

∆f =
2Im(G∗

1G2)sin(δ1 − δ2)
|G1|2 + |G2|2 + 2Re(G∗

1G2)cos(δ1 − δ2)

=
2Im(G∗

1G2)sinδf
|VubV ∗

cb|2 − 2Re(G∗
1G2)(1 − cosδf )

(3.19)

≈ −1.09 × 10−3 sinδf
3.66 × 10−7 + 4sin2(1/2δf )

On the other hand, from (2.27), the upper bound for the
direct CP violation asymmetry is

|∆f | ≤ 2|Im(G∗
1G2)|√

(|G1|2 + |G2|2)2 − 4[Re(G∗
1G2)2]

≈ η√
ρ2 + η2

≈ 0.90 (f = K0K̄0, φφ)
(3.20)

From (3.19) and (3.20), it can be seen that ∆f is very
sensitive to the strong phase-shift δf , In the very small
region 0 ≤ sinδf | < 10−3, |∆f | can change from zero
to about one. so if sinδf 6= 0, the direct CP violation
asymmetry could be quit large in the decay processes
D0 → K0K̄0, φφ.

For the decay of D0 → K1,2π
0, where the K1 and K2

both are the CP eigenstates with positive and negative
CP parity respectively

|K1.2 >=
1√
2
(|K0 > ±|K̄0 >,

CP |K0 >= |K̄0 >

(3.21)

The decay amplitudes of D0 → K1,2π
0 are then given by

A(K1,2π
0) =

1√
2
[A(K0π0) ±A(K̄0π0)]

Ā(K1,2π
0) =

1√
2
[Ā(K0π0) ± Ā(K̄0π0)]

(3.22)

Here the transition amplitudes of the decay D0(D̄0) →
K0π0 can be factorized as

A(K0π0) =VusV
∗
cdT1e

iδ1 ,

A(K̄0π0) =VudV
∗
csT2e

iδ2

Ā(K̄0π0) =V ∗
usVcdT1e

iδ1

Ā(K0π0) =V ∗
udVcsT2e

iδ2

(3.23)

Denoting G1 = VusV
∗
cd, G2 = VudV

∗
cs, we get

A(K1π
0) =

1√
2
(G1T1e

iδ1 +G2T2e
iδ2)

A(K2π
0) =

1√
2
(G1T1e

iδ1 +G2T2e
i(δ2+π))

(3.24)

Using |G1| = λ4, |G2| = (1 − λ2
2 )4, Re(G∗

1G2) = −λ2

(1 − λ2
2 )2, Im(G∗

1G2) = −J = −A2λ6(1 − λ2

2 )η, and as-
suming h ≡ T1

T2
= 1 [20], from (2.25), we obtain

∆K1π0 ≈ 2(ImG∗
1G2)sin(δ1 − δ2)

≈ −2Jsin(δ1 − δ2) (3.25)

∆K2π0 =
−2Im(G∗

1G2)sin(δ1 − δ2)
|G1|2h+ |G2|2 1

h − 2Re(G∗
1G2)cos(δ1 − δ2)

≈ −∆K1π0 (3.26)

|∆K1π0 | ≈ |∆K2π0 | < 2J ≈ 5 × 10−5 (3.27)

For the physical decay processes D0 → KS,Lπ
0, the mass

eigenstates Ks and KL can be written as

|KS >= pK |K0 > +qK |K̄0 >

|KL >= pK |K0 > −qK |K̄0 >
(3.28)

Since pK 6= qK , exactly speaking, both KSπ
0 and KLπ

0

are not CP eigenstates. By denoting |K̄S,L >= CP |KS,L >
= pK |K̄0 > ±qK |K0 > and from (3.23), we have

A(KS,Lπ
0) = < KS,Lπ

0|H|D0 >

= p∗
KA(K0π0) ± q∗

KA(K̄0π0)

= p∗
KG1T1e

iδ1 ± q∗
KG2T2e

iδ2

Ā(K̄S,Lπ
0) = < K̄S,Lπ

0|H|D̄0 >

= p∗
KĀ(K̄0π0) ± q∗

KĀ(K0π0)

= p∗
KG

∗
1T1e

iδ1 ± q∗
KG

∗
2T2e

iδ2

(3.29)

By straightforward calculation, the direct CP violation
asymmetry is given as (see (3.30) on top of the next page)
from pK

qK
= 1+εK

1−εK
, we have pKq

∗
K = |qK |2

|1−εK |2 (1 − |εK |2 +
i2ImεK), then we get

∆KS,Lπ0 ≈ ± 2Im(G∗
1G2)[sin(δ1 − δ2)

− 2(Imεk)cos(δ1 − δ2)]
(3.31)

Since |εk| ∼ 10−3, compare with (3.25) and (3.26), we can
see that

∆Ksπ0 ≈ ∆K1π0 , ∆KLπ0 ≈ ∆K2π0 (3.32)
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∆KS,Lπ0 =
|A(KS,Lπ

0)|2 − |Ā(K̄S,Lπ
0)|2

|A(KS,Lπ0)|2 + |Ā(K̄S,Lπ0)|2

=
±2Im(G∗

1G2)Re{pKq
∗
K [sin(δ1 − δ2) + icos(δ1 − δ2)]}

|pK |2|G1|2T1/T2 + |qK |2|G2|2T2/T1 ± 2Re(G∗
1G2)Re{pKq∗

K [cos(δ1 − δ2) − isin(δ1 − δ2)} (3.30)

hold to a good accuracy. We indicate that since |f >=
|KS,Lπ

0 > are not CP eigenstates, therefore |f̄ >≡
CP |f > 6= ±|f > and Ā(f̄) 6= Ā(f). The proper direct CP
violation formula is ∆f = |A(f)|2−|Ā(f̄)|2

|A(f)|2+|Ā(f̄)|2 , it is not equal to

∆′
f = |A(f)|2−|Ā(f)|2

|A(f)|2+|Ā(f)|2 . If using the ∆′
f formula, the result

will be drastically different from (3.32) [21].
Obviously, the above discussions can be directly ex-

tended to the decay of D0 → KS,LX
0, (X0 = π0, ρ0, η, φ),

we get

∆K1X0 ≈ −∆K2X0 = −2Jsin(δ1 − δ2)X0

|∆K1,2X0 | < 2J ≈ 5 × 10−5 (3.33)

∆KSX0 ≈∆K1X0

∆KLX0 ≈∆K2X0
(3.34)

3.3 The indirect CP violation

The magnitde of the indirect CP violation depends on
the mixing parameter x, y, ε̃ and φf , here φf = a + βf

(see (2.14)). Although both α and βf are related to the
phase convention, but the φf is rephasing-invariant. In
this section, we will discuss the phase α which is only
relevant to the D0 − D̄0 mixing and the phase βf which
depends on the specific final state of the neutral D meson
decays respectively, from that the magnitude of the phase
φf and the indirect CP violation will be estimated.

According to the relation (2.3), we find

(
q

p
)2 = |q

p
|2ei2α =

M∗
12 − i

2Γ
∗
12

M12 − i
2Γ12

tg(2α) = (3.35)

− 2[ReM12ImM12 + 1/4ReΓ12ImΓ12]
(ReM12)2 − (ImM12)2 + 1/4[(ReΓ12)2 − (ImΓ12)2]

Now we try to find the relations between ReM12, ImM12,
ReΓ12, ImΓ12 and the mixing parameter ∆m, ∆γ, ε̃.
DefiningM12 ≡ |M12|eiφM , Γ12 ≡ |Γ12|eiφΓ , we can obtain

tgφM =
ImM12

ReM12

= −4[Im(M12Γ12) − Im(M∗
12Γ12)]

∆m∆γ(1 + C)
, (3.36)

tgφΓ =
ImΓ12

ReΓ12

= −4[Im(M12Γ12) + Im(M∗
12Γ12)]

∆m∆γ(1 + C)
(3.37)

C =
1 − tgφM tgφΓ

1 + tgφM tgφΓ
(3.38)

Assuming that |ImM12| � |ReM12|, |ImΓ12| �
|ReΓ12|, i.e. |tgφM | � 1, |tgφM | � 1, and C ∼ 1, and
taking the limit of ε̃ → 0, C → 1, then,

tg2α ≈ − 2
4∆m2tgφM +∆γ2tgφΓ

4∆m2 +∆γ2

≈ (
∆γ

2∆m
− 2∆m

∆γ
)ε̃+

4Im(M12Γ12)
∆m∆γ

(3.39)

Using (3.36) and (3.37), we obtain

tgφM + tgφΓ ≈ − 4Im(M12Γ12)
∆m∆γ

tgφM − tgφΓ ≈ (4∆m2 +∆γ2)ε̃
2∆m∆γ

(3.40)

tg2α ≈ − (tgφM + tgφΓ ) + (
∆γ

2∆m
− 2∆m

∆γ
)ε̃

≈ − 2tgφM +
∆γ

∆m
ε̃ ≈ −2tgφΓ − 4∆m

∆γ
ε̃

(3.41)

Since |ε̃| � 1 and |tgφM | � 1, |tgφΓ | � 1, we have
tg2α ≈ sin2α ≈ 2α. It follows that

α ≈ − φM +
y

x
ε̃

≈ − φΓ − x

y
ε̃

≈ − 1/2(φM + φΓ ) + 1/2(
y

x
− x

y
)ε̃

(3.42)

From the discussion above, we can see that although the
α is relevant to the phase convention, but since |ε̃| � 1
and |ImM12| � |ReM12|, |ImΓ12| � |ReΓ12|, it makes α
small.

Now we discuss the phase βf which is defined as ρf ≡
|ρf |eiβf . For f being CP eigenstates, from (3.9) we have

ρf ≡ Ā(f)
A(f)

=
±Ā(f̄)
A(f)

= ±G∗
1T1e

iδ1 +G∗
2T2e

iδ2

G1T1eiδ1 +G2T2eiδ2

= ± 1
|A(f)|2 [G∗2

1 T
2
1

+G∗2
2 T

2
2 +G∗

1G
∗
22T1T2cos(δ1 − δ2)]

(3.43)

tgβf =
Im[G∗2

1 T
2
1 +G∗2

2 T
2
2 +G∗

1G
∗
22T1T2cos(δ1 − δ2)]

Re[G∗2
1 T

2
1 +G∗2

2 T
2
2 +G∗

1G
∗
22T1T2cos(δ1 − δ2)]

(3.44)

where G1 = VudV
∗
cd, G2 = VusV

∗
cs, according to the

Wolfenstein representation of the CKM matrix, ReG1 ≈
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−ReG2 = −λ(1 − λ2

2 ), ImG1 = 0, −J = ImG∗
1G2 =

G1ImG2 = ReG1ImG2, ImG2 = − J
ReG1

≈ A2λ5η. It
follows that

tgβf ≈ −2A2λ4η[T 2
2 − T1T2cos(δ1 − δ2)]

(1 − λ2

2 )[T 2
1 + T 2

2 − 2T1T2cos(δ1 − δ2)]

≈ − 1.09 × 10−3F (u)

(3.45)

where we take u = cos(δ1 − δ2)(−1 ≤ u ≤ 1) and define
the function F (u) = T 2

2 −T1T2u

T 2
1 +T 2

2 −2T1T2u
, the derivative of F (u)

is

dF (u)
du

=
T1T2(T 2

2 − T 2
1 )

(T 2
1 + T 2

2 − 2T1T2u)



> 0 (T2 > T1)

< 0 (T2 < T1)

= 0 (T2 = T1)

(3.46)

(i) For the case of T2 > T1, F (u) is an increasing function
F (u = −1) ≤ F (u) ≤ F (u = 1) i.e. 1

1+T1/T2
≤ F (u) ≤

1
1−T1/T2

(ii) For the case of T2 < T1, F (u) is a decreasing function
F (u = 1) ≤ F (u) ≤ F (u = −1) i.e. −T2

T1

1
1−T2/T1

≤ F (u) ≤
T2
T1

1
1+T2/T1

and |F (u)| ≤ T2
T1

1
1−T2/T1

(iii) For the case of T2 = T1, F (u) = 1/2.
Therefore, for the decay of D0 → K+K−(T2

T1
∼ 102), we

have |F (u)| ≈ 1, |tgβf | ≈ 1.09 × 10−3. For the decay of
D0 → π+π−, π0π0, π0ρ0, (T2

T1
∼ 10−2). We have |F (u)| ≤

T2
T1

, |tgβf | ≤ 1.09 × 10−5. While for the decay of D0 →
K0K̄0, φφ(T1 = T2) and D0 → π0η, π0φ, ηη, ηφ(T1 ∼
T2), we have |F (u)| ∼ O(1), |tgβf | ∼ 10−3. It means that
the phase βf is very small in all the processes of the D0

decays to these CP eigenstates. So we can safely write

|tgβf | ≈ |sinβf | ≈ |βf | ≤ 1.09 × 10−3 (3.47)

For the decay of D0 → K1,2X
0(X0 = π0, ρ0, η, φ), in

which G1 = VusV
∗
cd, G2 = VudV

∗
cs, ReG1 ≈ −λ2, ReG2 ≈

(1 − λ2/2)2, ImG1 = 0, ImG2 = −J/ReG1 = A2λ4(1 −
λ2/2)η and T1 ≈ T2, from (3.44), we get tgβf ≈ − ImG2

ReG2
≈

− A2λ4η
(1−λ2/2) ≈ −1.09 × 10−3. Therefore the relation (3.47)

is also satisfied in these cases.
Because α and βf both are small, from (3.42), we ob-

tain

sinφf ≈φf = α+ βf ≈ −φM +
y

x
ε̃+ βf � 1,

cosφf ≈ 1
(3.48)

According to (3.2) the indirect CP violation asymmetry
arising from the interplay between mixing and decay be-
comes

−xsinφf + yε̃cosφf ≈ −x(−φM + y/xε̃+ βf ) + yε̃

= x(φM − βf ) (3.49)

Because |φM | = |tgφM | = | ImM12
ReM12

| ∼ 10−2 [22], and from
(3.47), |βf | ≤ 10−3, our conclusion is that the magnitudes

of indirect CP violation asymmetries for the D0 decays to
all CP eigenstates are the same approximately which are
determined by the parameter x and the phase φM

−x sinφf + yε̃ cosφf ≈ xφM ≤
√
x2 + y2|φM |

≤ 8.6 × 10−4 (3.50)
ACP (f = ±f) ≈ ∆f + xφM

Where we have used rD = 1
2 (x2 + y2) < 3.7 × 10−3

[10]. Substituing xφM and different∆f in Sect. 3.2 for dif-
ferent decay modes into (3.2), we can estimate the CP
asymmetries for D0 − D̄0 decays into CP eigen states
ACP (f = ±f). The values of ACP (f = ±f) and the lower
bounds of the number ofD0(D̄0) needed at 3σ level for
testing CP violation are listed in Table 1.

3.4 Decays to non-CP eigenstates

For D0 decays to non-CP eigenstates, we restrict our dis-
cussion to the cases with no direct CP violation and only
one CKM factor in the decay amplitudes. It is ture for the
most processes of the D0 decays to non-CP eigenstates.
Since |α| � 1, |θ̄ − θ| � 1, we have

sinφ(+) = sin[α+ (θ̄ − θ)]

≈ α+ θ̄ − θ, cosφ(+) ≈ 1 (3.51)

According to the formulas (3.3) and (2.36), and using the
relations αy ≈ −φΓ y − xε̃, αx ≈ −φMx + yε̃, the CP
asymmetry can be written as

ACP (f) =
N5

D5
(3.52)

where

N5 =
{

|ρf |[x(φM − θ̄ + θ)cos(δ̄f − δf )

−y(φΓ − θ̄ + θ)sin(δ̄f − δf )]

−|ρf |2(x2 + y2)ε̃
}

D5 =
{
1 + 1/2|ρf |2(x2 + y2) − |ρf |[ycos(δ̄f − δf )

+xsin(δ̄f − δf )]
}

For the Cabibbo favoured decay processes D0 → f =
{K−π+, K−ρ+, K∗−π+, K∗−ρ+, K̄0π0, K̄0ρ0, K̄0η,
K̄∗0

φ0, K̄∗0
π0, K̄∗0

ρ0, K̄∗0
ηK̄∗0

φ}, we have

A(f) = VudV
∗
csTfe

iδf , Ā(f) = VudV
∗
csT̄fe

iδ̄f (3.53)

where VudV
∗
cs = |VcdV

∗
cs|eiθ, VudV

∗
us = |VcdV

∗
us|eiθ̄, and

Re(VudV
∗
cs) ≈ (1 − λ2

2 )2, Im(VudV
∗
cs) ≈ A2λ4(1 − λ2

2 )η,
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Table 1. CP asymmetries for the neutral D meson decays to CP eigenstates f and lower bound of ND0D̄0 at 3σ level

D0 → f ACP = ∆f + xφM hf upper bound of |∆f | upper bound of |ACP | Br lower bound
of ND0D̄0

K+K− −1.09 × 10−3hfsinδf + xφM hf ∼ 10−2 |∆f | < 1.09 × 10−5 |ACP | < 8.6 × 10−4 4.3 × 10−3 2.8 × 109

π+π− 1.9 × 10−3 8.1 × 109

π0π0 −1.09 × 10−3 1
hf

sinδf + xφM hf ∼ 102 |∆f | < 1.09 × 10−5 |ACP | < 8.6 × 10−4 8.4 × 10−4 1.4 × 1010

π0ρ0 1.0 × 10−2 1.2 × 109

π0η < 0.4 × 10−3

π0φ −1.09 × 10−3 sinδf

hf +1/hf −2cosδf
< 5 × 10−4

ηφ +xφM hf ∼ 0(1) |∆f | < 1.09×10−3

|hf −1/hf | < 2.8 × 10−3

ηη < 7.3 × 10−3

K0K̄0 −1.09 × 10−3 sinδf

3.66×10−7+4sin2 1
2 δf

hf = 1 if 0 < |sinδf | < 10−3 1.3 × 10−3

+xφM 0 < |∆f | < 1
(sensitive to δf )

K1π
0 1.1 × 10−2 9.9 × 108

K1ρ
0 −5 × 10−5sinδf + xφM hf ≈ 1 |∆f | < 5 × 10−5 |ACP | < 9.1 × 10−4 2.7 × 10−3 4.0 × 109

K1η 6.0 × 10−3 1.8 × 109

K1φ 2.9 × 10−3 3.7 × 109

* indirect CP violation asymmetry (for all CP eigenstates f): −xsinφf + yε̃cosφf ≈ xφM and x|φM | < 8.6 × 10−4 (see text)

ACP (f̄) ≈ 2λ2hf [xφMcos(δ̄f − δf ) + yφΓ sin(δ̄f − δf )] − 2(x2 + y2)ε̃
2λ4h2

f + (x2 + y2) − 2λ2hf [ycos(δ̄f − δf ) − xsin(δ̄f − δf )]
(3.59)

ReVcdV
∗
us ≈ −λ2, Im(VcdV

∗
us) = 0, it follows that

tgθ =
Im(VudV

∗
cs)

Re(VudV ∗
cs)

=
A2λ4η

(1 − λ2/2)
≈ 5 × 10−4,

θ ≈ tgθ ≈ 5 × 10−4 ≈ 0

tgθ̄ =
Im(VcdV

∗
us)

Re(VcdV ∗
cs)

= 0

θ̄ = 0

|ρf | = | Ā(f)
A(f)

| = |VcdV
∗
usT̄f

VudV ∗
csTf

| ≈ λ2

(1 − λ2/2)2
T̄f

Tf
≈ λ2hf

� 1 (hf ≡ T̄f

Tf
∼ O(1)) (3.54)

From (3.52) and (3.54), the CP asymmetry can be simpli-
fied to

ACP (f) ≈ λ2hf [xφMcos(δ̄f − δf ) − yφΓ sin(δ̄f − δ̄f )]

< λ2hf

√
(xφM )2 + (yφΓ )2 (3.55)

Using the relations φM = −α+ y
x ε̃, φΓ = −α− x

y ε̃,we have

(xφM )2 + (yφΓ )2 = (x2 + y2)(α2 + ε̃2)

≈ (x2 + y2)α2 (3.56)

So the upper bound of the CP asymmetry is

ACP (f) ≤ λ2hf |α|
√
x2 + y2 (3.57)

Taking λ2 ≈ 0.05, hf ≈ 1, |α| ≈ |φM | ∼ 10−2, x2 + y2 <
7.4 × 10−3, we get ACP (f) < 4.3 × 10−5.

For the double Cabibbo suppressed decay processes
D0 → f̄ = {K+π−,K+ρ−,K∗+π−,K∗+ρ−,K0π0,K0ρ0,
K0η, K0φ, K∗0π0, K∗0ρ0, K∗0η, K∗0φ}, we have

A(f̄) =V ∗
cdVusTf̄e

iδf̄ = (VcdV
∗
us)

∗T̄fe
iδ̄f

Ā(f̄) =V ∗
udVcsT̄f̄e

iδ̄f̄ = (VudV
∗
cs)

∗Tfe
iδf

(3.58)

i.e. (θ̄ − θ)f̄ = (θ − θ̄)f ≈ 5 × 10−4 ≈ 0, δf̄ = δ̄f δ̄f̄ = δf ,
|ρf̄ | = 1/|ρf | ≈ 1

λ2hf
.

From (3.52), we obtain (see (3.59) under Table 1). The
upper bound of the CP asymmetry is

ACP (f̄) ≤ 2λ2hf

√
α2 + ε̃2

√
x2 + y2 − 2(x2 + y2)ε̃

2λ4h2
f + (x2 + y2) − 2λ2hf

√
x2 + y2

≈ 2λ2hf |α|
√
x2 + y2

λ4h2
f + (λ2hf −

√
x2 + y2)2

(3.60)

Also taking λ2 = 0.05, hf = 1, |α| = |φM | ∼ 10−2, x2 +
y2 < 7.4 × 10−3, we get ACP (f̄) < 2.3 × 10−2. Although
the DCSD branching ratio Br(f̄) is small

Br(f̄)
Br(f)

≈ |VusV
∗
cd|2

|VudV ∗
cs|2

≈ 2.5 × 10−3 (3.61)
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A−
CP (f1, f2) =

2(1 − |ρf1 |2|ρf2 |2)(x2 + y2)ε̃+ 4|ρf1 ||ρf2 |sin[(θ̄f1 − θf1) − (θ̄f2 − θf2)]sin[(δ̄f1 − δf1) − (δ̄f2 − δf2)]
(1 + |ρf1 |2|ρf2 |2)(x2 + y2) − 4|ρf1 ||ρf2 |cos[(θ̄f1 − θf1) − (θ̄f2 − θf2)]cos[(δ̄f1 − δf1) − (δ̄f2 − δf2)]

(3.63)

A−
CP (f1, f2) =

2(1 − |ρf1 |2|ρf2 |2)(x2 + y2)ε̃
(1 + |ρf1 |2|ρf2 |2)(x2 + y2) − 4|ρf1 ||ρf2 |cos[(δ̄f1 − δf1) − (δ̄f2 − δf2)

(3.64)

A−
CP (f1, f2) ≈ 2(1 − hf1hf2)(x

2 + y2)ε̃
(1 + h2

f1
h2

f2
)(x2 + y2) − 4hf1hf2cos[(δ̄f1 − δf1) − (δ̄f2 − δf2)]

(3.67)

A−
CP (f1 = f̄1, f2) =

(1 − |ρf2 |2)[−∆f1 + (x2 + y2)ε̃] − 2|ρf2 |sin[βf1 − (θ̄f2 − θf2)]sin(δ̄f2 − δf2)
1 + |ρf2 |2 − 2|ρf2 |cos[βf1 − (θ̄f2 − θf2)]cos(δ̄f2 − δf2)

(3.68)

but the number of D0 − D̄0 pairs needed for testing the
CP asymmetry at 3σ level is NDD̄ ∼ 9

Br·A2
CP

, we find

NDD̄(f)
NDD̄(f̄)

≈ Br(f̄)
Br(f)

(AC(f̄)
AC(f)

)2

≈ 7.2 × 102 (3.62)

It means that we need more D0 − D̄0 pairs for Cabbibo
favoured decays than for Double Cabbibo suppressed de-
cays. So we see that, for example, the double Cabibbo
suppressed decay D0 → K+π− is superior compared with
the Cabibbo favoured decay D0 → K−π− for testing CP
violation.

The numerical results of CP asymmetries and the num-
ber of D0 − D̄0 pairs needed for testing CP violation at
3σ level are listed in Table 2.

3.5 Coherent D0D̄0 pair decays

According to our discussion in Sect. 3.1, there are an im-
portant simplification for decay processes of the coherent
(D0D̄0) pair with semileptonic tagging. In experiment, we
can use the decay processes of the coherant (D0D̄0)− pair
with the semileptonic tagging to measure the mixing pa-
rameter ε̃, the direct and indirect CP violation (see (3.6),
(3.7) and (3.8)) respectively. In this section, we discuss
the case of the coherent (D)D̄0)− pair decays in which,
each D0 or D̄0 decays into two mesons.

For the case of f1 and f2 being non-CP eigenstates
from (3.4) and (2.36) the CP asymmetry becomes (see
(3.63) on top of the page).

Letting {K−π+, . . . } represente the Cabibbo favoured
decay processes, and {K+π−, . . . } represente the double
Cabibbo suppressed decay processes. Since A−

CP (f̄1f̄2) =
−A−

CP (f1f2) and A−
CP (f̄1f2) = −A−

CP (f1f̄2), we only need
to discuss the two cases: (i) f1, f2ε{K+π−, . . . }, and (ii)
f1ε{K+π−, . . . }, f2ε{K−π+, . . . }. Since θ̄f1 − θf1 = θ̄f2 −
θf2 for all the cases, then the formula (3.71) can be written
as (see (3.64) on top of the page).

(i) f1, f2ε{K+π−, . . . } then |ρf1 | ≈ λ2hf1 � 1, |ρf2 | ≈
λ2hf2 � 1, so we have

A−
CP (f1, f2) (3.65)

≈ 2(x2 + y2)ε̃
(x2 + y2) − 4λ4hf1hf2cos[(δ̄f1 − δf1) − (δ̄f2 − δf2)]

For the case of f2 = f1 and taking λ2 = 0.05, hf1 = 1,
x2 + y2 = 7.4 × 10−5 we get

A−
CP (f1, f1) ≈ 2ε̃

1 − 4λ4h2
f1
/(x2 + y2)

≈ −5.7ε̃ (3.66)

(ii) f1ε{K−π+, . . . }, f2ε{K+π−, . . . }, then |ρf1 | ≈ λ2hf1 ,
|ρf2 | ≈ 1

λ2hf2 , so we have (see (3.67) on top of the page).
For the case of f2 = f̄1 since hf̄1

= 1/hf1 . we obtain
A−(f, f̄) = 0, it means, for examples, Γ−(K−π+, K+π−)
= Γ−(K+π−, K−π+).

For the case of f1 being CP eigenstates and f2 non
eigenstates from (3.5) and (2.36), we have (see (3.68) on
top of the page).

Since A−
CP (f1 = f̄1, f̄2) = −A−

CP (f1 = f̄1, f2), assum-
ing f2ε{K−π+, . . . }, |ρf2 | ≈ λ2hf2 � 1, from (3.68) we
get

A−
CP (f1 = f̄1, f2) = −∆f1 + (x2 + y2)ε̃− 2λ2hf2 (3.69)

×sin[βf1 − (θ̄f2 − θf2)]sin(δ̄f2 − δf2)

In (3.69), the first term ∆f1 represents the direct CP vi-
olation for decay to CP eigenstates f1 which have been
discussed in Sect. 3.2. The second term (x2 + y2)ε̃ arises
from the mixing which only depends on the mixing pa-
rameter and assuming |ε̃| ∼ 10−3, x2 + y2 < 7.4 × 10−3,
it is very small, i.e. (x2 + y2)|ε̃| < 7.4 × 10−6. The third
term describes indirect CP violation caused by decay only.
Since |βf1 | < 10−3, |θ̄f2 − θf2 | = 5 × 10−4, then |sin[βf1 −
(θ̄f2 − θf2)]| < 10−3. Taking λ2 = 0.05, hf2 = 1, we find

|2λ2hf2sin[βf1 − (θ̄f2 − θf2)]sin(δ̄f2 − δf2)|
< 10−4|sin(δ̄f2 − δf2)|

(3.70)

One can see that if mixing parameter vanishes, there may
still exists indirect CP violation, but it is small.

4 Conclusions and discussions

In this paper, the generic time-integrated CP asymmetry
formulas for the decay of the D0 − D̄0 systems are pre-
sented without specific assumption. Using these formulas,
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Table 2. The CP asymmetries for the neutral D meson decays to the non-CP eigenstates and the lower bound of ND0D̄0 at 3σ
level, where λ2 = 0.05, hf = 1 |α| ' |φM | ∼ 10−2, x2 + y2 < 7.4 × 10−3

D → f : K−π+ K−ρ+ K∗−π+ K∗−ρ+ K̄0π0 K̄0ρ0 K̄0η K̄0φ K̄∗0π0 K̄∗0ρ0 K̄∗0η K̄∗0φ

Br(%): 3.8 10.8 5.0 6.0 2.1 1.2 0.70 0.85 3.1 1.5 1.9 1.1

|ACP (f)| < λ2hf |α|
√

x2 + y2 ≈ 4.3 × 10−5

lower bound
of ND0D̄0 (f):1.3 × 1011 4.5 × 1010 9.9 × 1010 8.1 × 1010 2.3 × 1011 4.1 × 1011 6.9 × 1011 5.8 × 1011 1.5 × 1011 3.2 × 1011 2.5 × 1011 4.4 × 1011

D → f̄ : K+π− K+ρ− K∗+π− K∗+ρ− K0π0 K0ρ0 K0η K0φ K∗0π0 K∗0ρ0 K∗0η K∗0φ

Br(%): 9.5 × 10−3 2.7 × 10−2 1.3 × 10−2 1.5 × 10−2 5.3 × 10−3 3.0 × 10−3 1.8 × 10−3 2.1 × 10−3 7.8 × 10−3 3.8 × 10−3 4.8 × 10−3 2.8 × 10−3

|ACP (f̄)| < 2λ2hf

√
x2 + y2/[λ4h2

f + (λ2hf −
√

x2 + y2)2] ≈ 2.3 × 10−2

lower bound
of ND0D̄0 (f̄):1.7 × 108 6.2 × 107 1.4 × 108 1.2 × 108 3.2 × 108 5.7 × 108 9.9 × 108 8.0 × 108 2.2 × 108 4.5 × 108 3.5 × 108 6.1 × 108

we systematically discussed the D0 − D̄0 mixing and CP
violation for neutral D meson decays both incoherently
and coherently to a veriety of CP eigenstates and non-CP
eigenstates. The direct CP violation∆f and the important
rephasing-invariant parameter for the indirect CP viola-
tion φf = α + βf are analysed in detail and the upper
bound for the various CP violating terms (direct, mixing,
interplay of mixing and decay) are given using extremum
method to eliminate the unknown strong phase-shift. The
results are listed in Table 1 and 2.

For the case of f being CP eigenstates, from Table 1,
it can be seen that for the decay processes where hf >> 1
or hf � 1 the direct CP violation asymmetry is very
small, |∆f | < 10−5, and for the case of hf ∼ O(1), |∆f | <
10−4 ∼ 10−3, while for the case of hf = 1, the direct CP
violation asymmetry is very sensitive to the strong phase-
shift and could become quite large. So the most promis-
ing decay channels to observe the large direct CP viola-
tion might be D0 → K0K̄0, φφ, if the strong phase-shift
sinδf 6= 0. On the other hand although the KS,LX

0(X0 =
π0, ρ0, η, φ) are not the exact CP eigenstates due to the ex-
istence of small CP violation in K0 − K̄0 system,
but according to our CP asymmetry definition ∆f =
|A(f)|2−|Ā(f̄)|2
|A(f)|2+|Ā(f̄)|2 , the magnitude of the direct CP violation
for D0 → KS,LX

0 is approximately equal to the magni-
tude for D0 decays to the CP eigenstates K1,2X

0 which
is smaller than 10−4. This means that the effects of the
K0 − K̄0 mixing in the final state of the neutral D meson
decays to KS,LX

0 is negligible (see (3.31)).
From our discussion in Sect. 3.3, since |βf | < 10−3,

φf = α+ βf ≈ α (if α ∼ 10−2), then the indirect CP vio-
lation asymmetries of the neutral D meson decays to CP
eigenstates are approximately the same for all the decay
modes and equal to xφM . Different from the direct CP vi-
olation, the indirect CP violation does not depend on the
decay modes approximately while mainly depends upon
the D0 − D̄0 mixing parameter. This feature is useful for
experimental searches.

For the case of f being non-CP eigenstates, from Ta-
ble 2, we can see that the indirect CP violation asymme-
try of the Cabibbo favoured decay processes is very small

(< 10−5) while it could be large for the double Cabibbo
suppressed decay processes. Although the branching ratio
is small the double Cabibbo suppressed decay processes
are still superior to the Cabibbo favoured decay processes
for testing the CP violation in experiment. For the decay
processes D0 → K+ρ−,K∗+ρ−,K+π− one needs about
108 D0D̄0 events to test the CP asymmetry. It should
be achievable in the τ -charm factory [23].

Usually direct CP violation asymmetry in transition
amplitudes and indirect CP violation arising from the in-
terplay of mixing and decay appear simultaneously for
the case of D0(D̄0) decays to the CP eigenstates, but in
the decay processes of the D0(D̄0)− pair with semilep-
tonic tagging because of the coherente we can distinguish
them from one another by the relations A(−)

CP (f, `+X−) ≈
−∆f +(x2+y2)ε̃ and ACP (f)+A(−)

CP (f, `+X−) ≈ −xsinφf

+yε̃cosφf ≈ xφM (see (3.7), (3.8) and (3.58)), while for
f being non-CP eigenstates, we have more simple relation
A(−)

CP (f, `+X−) = 2ε̃. Since the CP asymmetry A(−)
CP (f,

`+X−) (also for A(−)
CP (f, `−X+) = −A(−)

CP (f, `+X−) is in-
dependent of the decay final-state f , it will increase the
number of decay events in statistics. If ε̃ ∼ 10−3, such
a CP violating signal might be detectable in experiment.
Conversely we can use this relation to measure the mix-
ing parameter ε̃. We also discussed various cases for co-
herent (D0D̄0)− pair in which each D0 or D̄0 decay to
two mesons. Since the coherent (D0D̄0)− pair can be pro-
ducted by e+e− → ψ(3.77) → (D0D̄0)− or e+e− →
Ψ(4.14) → (D∗0D̄0)− → π0(D0D̄0)−, so these results are
specially useful for the programs of the proposed τ -charm
factories.

We note that although the upper bounds of various
CP violation asymmetries for decays of the D0 − D̄0 sys-
tem given in this paper, are useful for searching CP viola-
tion signal, testing the standard model and probing new
physics beyond the standard model, in order to give more
precise numerical predictions for CP asymmetries, it needs
to take more efforts to calculate the accurate magnitude
of hf = T1/T2 (specially in the case of hf ∼ O(1)) and
strong phase-shift δf = δ1 − δ2.
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